Using Parse Features for Preposition Selection and Error Detection

نویسندگان

  • Joel R. Tetreault
  • Jennifer Foster
  • Martin Chodorow
چکیده

We evaluate the effect of adding parse features to a leading model of preposition usage. Results show a significant improvement in the preposition selection task on native speaker text and a modest increment in precision and recall in an ESL error detection task. Analysis of the parser output indicates that it is robust enough in the face of noisy non-native writing to extract useful information.

منابع مشابه

Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties

Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...

متن کامل

Using Error-Annotated ESL Data to Develop an ESL Error Correction System

This paper presents research on building a model of grammatical error correction, for preposition errors in particular, in English text produced by language learners. Unlike most previous work which trains a statistical classifier exclusively on well-formed text written by native speakers, we train a classifier on a large-scale, error-tagged corpus of English essays, relying on contextual and g...

متن کامل

Using an Error-Annotated Learner Corpus to Develop an ESL/EFL Error Correction System

This paper presents research on building a model of grammatical error correction, for preposition errors in particular, in English text produced by language learners. Unlike most previous work which trains a statistical classifier exclusively on well-formed text written by native speakers, we train a classifier on a large-scale, error-tagged corpus of English essays written by EFL learners, rel...

متن کامل

NAIST at the HOO 2012 Shared Task

This paper describes the Nara Institute of Science and Technology (NAIST) error correction system in the Helping Our Own (HOO) 2012 Shared Task. Our system targets preposition and determiner errors with spelling correction as a pre-processing step. The result shows that spelling correction improves the Detection, Correction, and Recognition Fscores for preposition errors. With regard to preposi...

متن کامل

Determining Effective Features for Face Detection Using a Hybrid Feature Approach

Detecting faces in cluttered backgrounds and real world has remained as an unsolved problem yet. In this paper, by using composition of some kind of independent features and one of the most common appearance based approaches, and multilayered perceptron (MLP) neural networks, not only some questions have been answered, but also the designed system achieved better performance rather than the pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010